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Importance of gas diffusion in CL

 CLis a porous layer with ~30-60% porosity

» Oxygen reduces in vicinity of Pt particles embedded in CCL

« Oxygen and product water vapor transport through diffusion into
and out of the CCL respectively

CL diffusivity affects
v Uniformity of oxygen reduction through the whole CCL
v' The CCL lifetime
v The power density of PEMFC
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Challenges to model diffusivity of CCL

 CL has arandom, to some extend, unpredictable structure

« Structure of CL is affected by many factors from composition to
manufacturing process of producing CL

« Different diffusion mechanisms are happening within CL

« Generally working condition is a humid one which affects gas
diffusion in several ways (interaction of water vapor with gas,

ionomer swelling, etc.)
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SFU Existing models for gas diffusivity within CL
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SFU Existing models for gas diffusivity within CL
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Objective of this study

Develop a diffusivity model for CL to be integrated in PEMFC toolbox
developed at AFCC which is:

v Accurate enough for performance prediction

v Considers the most important parameters affecting gas diffusion:
porosity, PSD, and connectivity

v' Low demanding and not expensive

v' Easy to implement

Unit Cell approach:

v' Could be Accurate enough for performance prediction [1-3]

v' Considers porosity, PSD, and a connectivity to some extend close to
CL connectivity

v' Low demanding and not expensive

v' Easy to implement

[1] H. Sadeghifar, N. Djilali, and M. Bahrami, (2014) J. Power Sources, Vol. 266, pp. 51-59
[2] V. Norouzifard and M. Bahrami, (2014) J. Power Sources, Vol. 264, pp. 92-99
[3] H. Sadeghifar, N. Djilali, and M. Bahrami, (2014) J. Power Sources, Vol. 248, pp. 632-641.
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Microstructure of catalyst layer

Secondary

-~ ~~eict of nggo Pt parti
_ pores

Primary
pores

Primary particle Agglomerate Aggregate
~20 nm ~100 - 300 nm ~1-3um [1]

Primary pores
Secondary pores

[1] T. Sobolyeva“On the Microstructure of PEM Fuel Cell Catalyst Layer ” (2010) Simon Fraser University, PhD Thesis.
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Simplified structure of catalyst layer

There is no difference between ionomer and
carbon or Pt particles

All primary particles are spheres with the same
diameter

All agglomerates are spheres with the same
diameter

There are known arrangements for primary
particles and agglomerates

A Primary

Secondary

) pores

Unit Ce—ll for CL
LAEC
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Modeling Diffusivity for simplified CL

1. Finding the geometry parameters of the unit cell e.g.
dimensions

Calculating diffusivity within agglomerates (primary pores)
Calculating diffusivity of secondary pores

Calculating effective diffusivity of unit cell based on geometry
and diffusivities of the secondary pores and primary pores

W

Unit Cell for CL
o LAEC
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spu Arrangement for primary particles within agglomerates

Close-packing of spheres (FCC):
|s a stable arrangement [1]
Have close porosity to random packing
based on [1]
The porosity is compatible with CL porosity
e =10.26

Pore dimeter for FCC arrangement:

d%\3
Apri = 7
7 d?\ d*V3 md?
AporezAtri_(3x§X§)= 4 - 3
= 0.04d?
T d md
Fpore = 1:?5:761
0.16
d = _PoT° _ =0.1d
pore Ppore 7'[/2

[1] T.C. Hales(1998). "An overview of the Kepler conjecture”.arXiv:math/9811071v2.
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SEU Effective diffusivity of primary pores agglomerates

Effective diffusivity:

Dgo1ia = 0 (for primary particles)
4 RT

Dy, ==d —[1
Kn 3 pore 2TM [ ] Db — O.ZDblnary

D _1+1_
I7 7 \Dy " Dgn

[1] Kast W, C-R Hohenthanner. Mass transfer within the gas-phase of porous media, International Journal of Heat and Mass Transfer



Modeling agglomerates

« Spherical agglomerates touching each other have
been used widely by researchers[1-6]

« Such agglomerates have higher surface area than
the real agglomerates [7-8]

» Such agglomerates results in high porosity for CL

v Overlapped spheres with simple cubic arrangement:
less porosity, and less active surface area than
spherical agglomerates
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spy Pore diameter and porosity of overlapped agglomerates
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Diffusivity of overlapped agglomerates

Dery = f(Dv' Dp)

(ot 7as)
Dkn Dbinary

D.sfr of primary pores

Dy
DP

To find f the lower and upper bound of the unit cell resistance are introduced:
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Effective diffusivity of lower bound

Lower bound for resistance
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|
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Effective diffusivity of upper bound

Upper bound for resistance
1 2

Ry = aD,, % D (&% — 1)
i 1 1
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sFu Resistance semi-analytical results vs numerical one

Numerical model parameters (done by ANSYS Fluent 14.5)
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Modeling diffusivity for simplified CL

Simplified CL has porosity=¢, a primary pore size d, and a
secondary pore size d:

d,is the pore size for FCC arrangement then D,, could be
calculated.

D, = g(dp) for FCC arrangement

Geometry parameters of unit cell: (a,§) = h(e, d;)
Deff — f(a: $) Dp: Dbinary)
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Considering different pore sizes

Secondary pores
]
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Primary pores :
Pore diameter

For primary pores Kn diffusivity is dominant which is a

linear function of diameter

* d, =volume average of all primary pore diameters

» For each secondary pore there would be a unit cell with
dimension compatible with the considered diameter and
porosity of CL
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sru Connection of unit cells with different pore diameters

Thickness of CL is negligible in compare with its width and length,
then we assume parallel unit cells

d, & P,%

d, & P, %

Flow directio@ C L
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The model features

The model considers the followings:

1. Porosity (each unit cell has a porosity same as CL porosity)

2. Pore size distribution (through introducing different unit cell
sizes)

3. Connectivity of the structure in the model is different than one
in CL but tried to be as close as possible

4. Knudsen and classical diffusion mechanisms are both
considered

5. There in no difference between ionomer, carbon, and Pt
particles yet

6. Model works for dry condition, and still no humidity effects

()~ LAEC
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Diffusivity vs Porosity (input data from Shen study)
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[1] Shen J, et al. Measurement of effective gas diffusion coefficients of catalyst layers of PEM fuel cells with a ng?:ﬂzﬁqdi'a?egi'f%")sion cell,
» Journal of Power Source, 196 (2011) 674-678.
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Next steps

1. Changing the unit cell distribution to make the CL
homogeneous

Defining the pore diameter in the structure based on the one
applied by the input PSD measurement method

Introducing ionomer effect

Introducing water content effect

Introducing cracks effect

Introducing a proper PSD measurement method

N

S
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Thanks for your attention!
Any guestions?




